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The Course

• Course Goal: a rigorous introduction to the design and analysis of 
algorithms
• Not a lab or programming course

• Not a math course, either

• Textbook: Introduction to Algorithms, Cormen, Leiserson, Rivest, Stein
• An excellent reference you should own 



The Course

• Grading policy:
• Homework & Quizzes:                 15%

• Exam 1: Sep,25th 3:45-5:00 pm        25%

• Exam 2: Oct 30th 3:45-5:00 pm 25%

• Final: Dec 12th 7:45-10:00 am      35%



The Course

• Format
• Two lectures/week

• Homework most weeks
• Problem sets

• Maybe occasional programming assignments

• Two tests + final exam



Algorithms

Algorithm: give a language for talking about program behavior.

• a set of step by step instructions a  program follows to do certain task.



Example 1

How to get to work in the morning
• Different ways with same start and end

Algorithm 1: walking 
1. Walk out the front door and lock it.

2. Walk 3 miles.

3. Enter the department  building.



Example 2

Algorithm 2: Bicycle
1. Walk out front door and lock it

2. Unlock bicycle , put on helmet.

3. Ride bicycle for 3 miles.

4. Lock up bicycle, take off helmet.

5. Enter department building.



Example 3

Algorithm 3: bus

1. Walk out front door and lock it.

2. Walk half a mile to the bus stop.

3. Ride the bus.

4. Walk to the office.

5. Enter office building.



Example 4

Algorithm 4: Taxi

1. Call taxi company.

2. Walk out front door and lock it.

3. Ride the taxi for miles.

4. Enter the department building.



Compare Algorithms

Walking Bicycle Bus Taxi  

free cheapcheapexpensive



Compare Algorithms…

Walking Bicycle Bus Taxi  

slow Medium Medium fast



Analysis of Algorithms

Analysis of Algorithms: is the theoretical study of 
computer program performance and resource usage.

• Study how to make things fast.

• In programming …What is more important than 
performance?

1. Correctness

2. Simplicity

3. Maintainability

4. Robustness  of the software

5. Security…etc.



Asymptotic Performance

• In this course, we care most about asymptotic performance
• How does the algorithm behave as the problem size gets very large?

• Running time

• Memory/storage requirements

• Bandwidth/power requirements/logic gates/etc.



Running Time

• Number of primitive steps that are executed
• Except for time of executing a function call most statements roughly require 

the same amount of time

• We can be more exact if need be

• Worst case vs. average case
( best case is ….)



Insertion Sort

Statement Effort
InsertionSort(A, n) {

for i = 2 to n { c1n

key = A[i] c2(n-1)

j = i - 1; c3(n-1)

while (j > 0) and (A[j] > key) { c4T

A[j+1] = A[j] c5(T-(n-1))

j = j - 1 c6(T-(n-1))

} 0

A[j+1] = key c7(n-1)

} 0

}

T = t2 + t3 + … + tn where ti is number of while expression evaluations for the  ith for loop iteration



Analyzing Insertion Sort
• T(n) = c1n + c2(n-1) + c3(n-1) + c4T + c5(T - (n-1)) + c6(T - (n-1)) + c7(n-1) 

= c8T + c9n + c10

• What can T be?
• Best case -- inner loop body never executed

• ti = 1  T(n) is a linear function

• Worst case -- inner loop body executed for all previous 
elements
• ti = i  T(n) is a quadratic function

• Average case
• ???



Analysis

• Simplifications
• Ignore actual and abstract statement costs

• Order of growth is the interesting measure:
• Highest-order term is what counts

• Remember, we are doing asymptotic analysis

• As the input size grows larger it is the high order term that dominates



Upper Bound Notation

• We say InsertionSort’s run time is O(n2)
• Properly we should say run time is in O(n2)

• Read O as “Big-O” (you’ll also hear it as “order”)

• In general a function
• f(n) is O(g(n)) if there exist positive constants c and n0 such that f(n)  c  g(n) 

for all n  n0

• Formally
• O(g(n)) = { f(n):  positive constants c and n0 such that f(n)  c  g(n)  n  n0



Insertion Sort Is O(n2)

• Proof
• Suppose runtime is  an2 + bn + c 

• If any of  a, b, and c are less than 0 replace the constant with its absolute value

• an2 + bn + c  (a + b + c)n2 + (a + b + c)n + (a + b + c)

•  3(a + b + c)n2 for n  1

• Let c’ = 3(a + b + c) and let n0 = 1

• Question
• Is InsertionSort O(n3)?

• Is InsertionSort O(n)?



Big O Fact

• A polynomial of degree k is O(nk)

• Proof:
• Suppose f(n) = bkn

k + bk-1nk-1 + … + b1n + b0

• Let ai = | bi |

• f(n)  akn
k + ak-1nk-1 + … + a1n + a0
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Lower Bound Notation

• We say InsertionSort’s run time is (n)

• In general a function
• f(n) is (g(n)) if  positive constants c and n0 such that 0  cg(n)  f(n)   n 

n0

• Proof:
• Suppose run time is an + b

• Assume a and b are positive (what if b is negative?)

• an  an + b



Asymptotic Tight Bound

• A function f(n) is (g(n)) if  positive constants c1, c2, and n0 such that 

c1 g(n)  f(n)  c2 g(n)  n  n0

• Theorem
• f(n) is (g(n)) iff f(n) is both O(g(n)) and (g(n))

• Proof: someday



Practical Complexity
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Practical Complexity
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Practical Complexity
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Other Asymptotic Notations

• A function f(n) is o(g(n)) if  positive constants c and n0 such that 
f(n) < c g(n)  n  n0

• A function f(n) is (g(n)) if  positive constants c and n0 such that 
c g(n) < f(n)  n  n0

• Intuitively,

 o() is like < 

 O() is like 

 () is like > 

 () is like 

 () is like =



Up Next

• Solving recurrences
• Substitution method

• Master theorem


