
Algorithms
Lec#1

Fall2014

David Luebke
2

8/19/2014

The Course

• Course Goal: a rigorous introduction to the design and analysis of
algorithms
• Not a lab or programming course

• Not a math course, either

• Textbook: Introduction to Algorithms, Cormen, Leiserson, Rivest, Stein
• An excellent reference you should own

The Course

• Grading policy:
• Homework & Quizzes: 15%

• Exam 1: Sep,25th 3:45-5:00 pm 25%

• Exam 2: Oct 30th 3:45-5:00 pm 25%

• Final: Dec 12th 7:45-10:00 am 35%

The Course

• Format
• Two lectures/week

• Homework most weeks
• Problem sets

• Maybe occasional programming assignments

• Two tests + final exam

Algorithms

Algorithm: give a language for talking about program behavior.

• a set of step by step instructions a program follows to do certain task.

Example 1

How to get to work in the morning
• Different ways with same start and end

Algorithm 1: walking
1. Walk out the front door and lock it.

2. Walk 3 miles.

3. Enter the department building.

Example 2

Algorithm 2: Bicycle
1. Walk out front door and lock it

2. Unlock bicycle , put on helmet.

3. Ride bicycle for 3 miles.

4. Lock up bicycle, take off helmet.

5. Enter department building.

Example 3

Algorithm 3: bus

1. Walk out front door and lock it.

2. Walk half a mile to the bus stop.

3. Ride the bus.

4. Walk to the office.

5. Enter office building.

Example 4

Algorithm 4: Taxi

1. Call taxi company.

2. Walk out front door and lock it.

3. Ride the taxi for miles.

4. Enter the department building.

Compare Algorithms

Walking Bicycle Bus Taxi

free cheapcheapexpensive

Compare Algorithms…

Walking Bicycle Bus Taxi

slow Medium Medium fast

Analysis of Algorithms

Analysis of Algorithms: is the theoretical study of
computer program performance and resource usage.

• Study how to make things fast.

• In programming …What is more important than
performance?

1. Correctness

2. Simplicity

3. Maintainability

4. Robustness of the software

5. Security…etc.

Asymptotic Performance

• In this course, we care most about asymptotic performance
• How does the algorithm behave as the problem size gets very large?

• Running time

• Memory/storage requirements

• Bandwidth/power requirements/logic gates/etc.

Running Time

• Number of primitive steps that are executed
• Except for time of executing a function call most statements roughly require

the same amount of time

• We can be more exact if need be

• Worst case vs. average case
(best case is ….)

Insertion Sort

Statement Effort
InsertionSort(A, n) {

for i = 2 to n { c1n

key = A[i] c2(n-1)

j = i - 1; c3(n-1)

while (j > 0) and (A[j] > key) { c4T

A[j+1] = A[j] c5(T-(n-1))

j = j - 1 c6(T-(n-1))

} 0

A[j+1] = key c7(n-1)

} 0

}

T = t2 + t3 + … + tn where ti is number of while expression evaluations for the ith for loop iteration

Analyzing Insertion Sort
• T(n) = c1n + c2(n-1) + c3(n-1) + c4T + c5(T - (n-1)) + c6(T - (n-1)) + c7(n-1)

= c8T + c9n + c10

• What can T be?
• Best case -- inner loop body never executed

• ti = 1 T(n) is a linear function

• Worst case -- inner loop body executed for all previous
elements
• ti = i T(n) is a quadratic function

• Average case
• ???

Analysis

• Simplifications
• Ignore actual and abstract statement costs

• Order of growth is the interesting measure:
• Highest-order term is what counts

• Remember, we are doing asymptotic analysis

• As the input size grows larger it is the high order term that dominates

Upper Bound Notation

• We say InsertionSort’s run time is O(n2)
• Properly we should say run time is in O(n2)

• Read O as “Big-O” (you’ll also hear it as “order”)

• In general a function
• f(n) is O(g(n)) if there exist positive constants c and n0 such that f(n) c g(n)

for all n n0

• Formally
• O(g(n)) = { f(n): positive constants c and n0 such that f(n) c g(n) n n0

Insertion Sort Is O(n2)

• Proof
• Suppose runtime is an2 + bn + c

• If any of a, b, and c are less than 0 replace the constant with its absolute value

• an2 + bn + c (a + b + c)n2 + (a + b + c)n + (a + b + c)

• 3(a + b + c)n2 for n 1

• Let c’ = 3(a + b + c) and let n0 = 1

• Question
• Is InsertionSort O(n3)?

• Is InsertionSort O(n)?

Big O Fact

• A polynomial of degree k is O(nk)

• Proof:
• Suppose f(n) = bkn

k + bk-1nk-1 + … + b1n + b0

• Let ai = | bi |

• f(n) akn
k + ak-1nk-1 + … + a1n + a0

k

i

k

k

i

i

k cnan
n

n
an

Lower Bound Notation

• We say InsertionSort’s run time is (n)

• In general a function
• f(n) is (g(n)) if positive constants c and n0 such that 0 cg(n) f(n) n

n0

• Proof:
• Suppose run time is an + b

• Assume a and b are positive (what if b is negative?)

• an an + b

Asymptotic Tight Bound

• A function f(n) is (g(n)) if positive constants c1, c2, and n0 such that

c1 g(n) f(n) c2 g(n) n n0

• Theorem
• f(n) is (g(n)) iff f(n) is both O(g(n)) and (g(n))

• Proof: someday

Practical Complexity

0

250

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

f(n) = n

f(n) = log(n)

f(n) = n log(n)

f(n) = n 2̂

f(n) = n 3̂

f(n) = 2 n̂

Practical Complexity

0

500

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

f(n) = n

f(n) = log(n)

f(n) = n log(n)

f(n) = n 2̂

f(n) = n 3̂

f(n) = 2 n̂

Practical Complexity

0

1000

1 3 5 7 9 11 13 15 17 19

f(n) = n

f(n) = log(n)

f(n) = n log(n)

f(n) = n 2̂

f(n) = n 3̂

f(n) = 2 n̂

Practical Complexity

0

1000

2000

3000

4000

5000

1 3 5 7 9 11 13 15 17 19

f(n) = n

f(n) = log(n)

f(n) = n log(n)

f(n) = n 2̂

f(n) = n 3̂

f(n) = 2 n̂

Practical Complexity

1

10

100

1000

10000

100000

1000000

10000000

1 4 16 64 256 1024 4096 16384 65536

Other Asymptotic Notations

• A function f(n) is o(g(n)) if positive constants c and n0 such that
f(n) < c g(n) n n0

• A function f(n) is (g(n)) if positive constants c and n0 such that
c g(n) < f(n) n n0

• Intuitively,

 o() is like <

 O() is like

 () is like >

 () is like

 () is like =

Up Next

• Solving recurrences
• Substitution method

• Master theorem

