Algorithms

Lec#1 Fall2014

The Course

- Course Goal: a rigorous introduction to the design and analysis of algorithms
 - Not a lab or programming course
 - Not a math course, either
- Textbook: Introduction to Algorithms, Cormen, Leiserson, Rivest, Stein
 - An excellent reference you should own

The Course

- Grading policy:
 - Homework & Quizzes:
 - Exam 1:
 - Exam 2:
 - Final:

15%

Sep,25 th	3:45-5:00 pm	25%
Oct 30 th	3:45-5:00 pm	25%
Dec 12 th	7:45-10:00 am	35%

The Course

- Format
 - Two lectures/week
 - Homework most weeks
 - Problem sets
 - Maybe occasional programming assignments
 - Two tests + final exam

Algorithms

Algorithm: give a language for talking about program behavior.

• a set of step by step instructions a program follows to do certain task.

How to get to work in the morning

• Different ways with same start and end

Algorithm 1: walking

- 1. Walk out the front door and lock it.
- 2. Walk 3 miles.
- 3. Enter the department building.

Algorithm 2: Bicycle

- 1. Walk out front door and lock it
- 2. Unlock bicycle , put on helmet.
- 3. Ride bicycle for 3 miles.
- 4. Lock up bicycle, take off helmet.
- 5. Enter department building.

Algorithm 3: bus

- 1. Walk out front door and lock it.
- 2. Walk half a mile to the bus stop.
- 3. Ride the bus.
- 4. Walk to the office.
- 5. Enter office building.

Algorithm 4: Taxi

- 1. Call taxi company.
- 2. Walk out front door and lock it.
- 3. Ride the taxi for miles.
- 4. Enter the department building.

Compare Algorithms

WalkingBicycleBusTaxifreecheap cheap expensive

Compare Algorithms...

WalkingBicycleBusTaxislowMediumMediumfast

Analysis of Algorithms

<u>Analysis of Algorithms</u>: is the theoretical study of computer program <u>performance</u> and resource usage.

- Study how to make things fast.
- In programming ... What is more important than performance?
 - 1. Correctness
 - 2. Simplicity
 - 3. Maintainability
 - 4. Robustness of the software
 - 5. Security...etc.

Asymptotic Performance

- In this course, we care most about *asymptotic performance*
 - How does the algorithm behave as the problem size gets very large?
 - Running time
 - Memory/storage requirements
 - Bandwidth/power requirements/logic gates/etc.

Running Time

- Number of primitive steps that are executed
 - Except for time of executing a function call most statements roughly require the same amount of time
 - We can be more exact if need be
- Worst case vs. average case

(best case is)

Insertion Sort

Statement	Effort		
InsertionSort(A, n) {			
for $i = 2$ to n {			
key = A[i]		c ₂ (n-1)	
j = i - 1;		c ₃ (n-1)	
while $(j > 0)$ and $(A[j] > key)$	{	c ₄ T	
A[j+1] = A[j]		c ₅ (T-(n-1))	
j = j - 1		c ₆ (T-(n-1))	
}		0	
A[j+1] = key	c ₇ (n-1)		
}		0	
}			

 $T = t_2 + t_3 + ... + t_n$ where t_i is number of while expression evaluations for the ith for loop iteration

Analyzing Insertion Sort

- $T(n) = c_1 n + c_2(n-1) + c_3(n-1) + c_4 T + c_5(T (n-1)) + c_6(T (n-1)) + c_7(n-1)$ = $c_8 T + c_9 n + c_{10}$
- What can T be?
 - Best case -- inner loop body never executed
 - $t_i = 1 \rightarrow T(n)$ is a linear function
 - Worst case -- inner loop body executed for all previous elements
 - $t_i = i \rightarrow T(n)$ is a quadratic function
 - Average case
 - ???

Analysis

- Simplifications
 - Ignore actual and abstract statement costs
 - Order of growth is the interesting measure:
 - Highest-order term is what counts
 - Remember, we are doing asymptotic analysis
 - As the input size grows larger it is the high order term that dominates

Upper Bound Notation

- We say InsertionSort's run time is O(n²)
 - Properly we should say run time is in O(n²)
 - Read O as "Big-O" (you'll also hear it as "order")
- In general a function
 - f(n) is O(g(n)) if there exist positive constants c and n₀ such that f(n) ≤ c · g(n) for all n ≥ n₀
- Formally
 - $O(g(n)) = \{ f(n) : \exists positive constants c and n_0 such that f(n) \le c \cdot g(n) \forall n \ge n_0 \}$

Insertion Sort Is O(n²)

• Proof

- Suppose runtime is an² + bn + c
 - If any of a, b, and c are less than 0 replace the constant with its absolute value
- $an^2 + bn + c \le (a + b + c)n^2 + (a + b + c)n + (a + b + c)$

•
$$\leq 3(a + b + c)n^2$$
 for $n \geq 1$

- Let c' = 3(a + b + c) and let $n_0 = 1$
- Question
 - Is InsertionSort O(n³)?
 - Is InsertionSort O(n)?

Big O Fact

- A polynomial of degree k is O(n^k)
- Proof:
 - Suppose $f(n) = b_k n^k + b_{k-1} n^{k-1} + ... + b_1 n + b_0$
 - Let a_i = | b_i |
 - $f(n) \le a_k n^k + a_{k-1} n^{k-1} + ... + a_1 n + a_0$

$$\leq n^k \sum a_i \frac{n^i}{n^k} \leq n^k \sum a_i \leq cn^k$$

Lower Bound Notation

- We say InsertionSort's run time is $\Omega(n)$
- In general a function
 - f(n) is $\Omega(g(n))$ if \exists positive constants c and n_0 such that $0 \le c \cdot g(n) \le f(n) \forall n \ge n_0$
- Proof:
 - Suppose run time is an + b
 - Assume a and b are positive (what if b is negative?)
 - an \leq an + b

Asymptotic Tight Bound

• A function f(n) is $\Theta(g(n))$ if \exists positive constants c_1, c_2 , and n_0 such that

 $c_1 \operatorname{g}(n) \leq \operatorname{f}(n) \leq c_2 \operatorname{g}(n) \ \forall \ n \geq n_0$

- Theorem
 - f(n) is $\Theta(g(n))$ iff f(n) is both O(g(n)) and $\Omega(g(n))$
 - Proof: someday

Other Asymptotic Notations

- A function f(n) is o(g(n)) if ∃ positive constants c and n₀ such that f(n) < c g(n) ∀ n ≥ n₀
- A function f(n) is $\omega(g(n))$ if \exists positive constants c and n_0 such that $c g(n) < f(n) \forall n \ge n_0$
- Intuitively,

- o() is like < ω () is like > Θ () is like =
- O() is like \leq Ω () is like \geq

Up Next

- Solving recurrences
 - Substitution method
 - Master theorem