Algorithms

Lec\#1
Fall2014

The Course

- Course Goal: a rigorous introduction to the design and analysis of algorithms
- Not a lab or programming course
- Not a math course, either
- Textbook: Introduction to Algorithms, Cormen, Leiserson, Rivest, Stein
- An excellent reference you should own

The Course

- Grading policy:
- Homework \& Quizzes:

15\%

- Exam 1:
- Exam 2:
- Final:

Oct 30th $3: 45-5: 00 \mathrm{pm} \quad 25 \%$
Dec 12 ${ }^{\text {th }} 7: 45-10: 00 \mathrm{am} \quad 35 \%$

The Course

- Format
- Two lectures/week
- Homework most weeks
- Problem sets
- Maybe occasional programming assignments
- Two tests + final exam

Algorithms

Algorithm: give a language for talking about program behavior.

- a set of step by step instructions a program follows to do certain task.

Example 1

How to get to work in the morning

- Different ways with same start and end

Algorithm 1: walking

1. Walk out the front door and lock it.
2. Walk 3 miles.
3. Enter the department building.

Example 2

Algorithm 2: Bicycle

1. Walk out front door and lock it
2. Unlock bicycle, put on helmet.
3. Ride bicycle for 3 miles.
4. Lock up bicycle, take off helmet.
5. Enter department building.

Example 3

Algorithm 3: bus

1. Walk out front door and lock it.
2. Walk half a mile to the bus stop.
3. Ride the bus.
4. Walk to the office.
5. Enter office building.

Example 4

Algorithm 4: Taxi

1. Call taxi company.
2. Walk out front door and lock it.
3. Ride the taxi for miles.
4. Enter the department building.

Compare Algorithms

Walking	Bicycle cheap cheap expensive	Taxi
free		

Compare Algorithms...

Walking	Bicycle	Bus	Taxi
slow	Medium	Medium	fast

Analysis of Algorithms

Analysis of Algorithms: is the theoretical study of computer program performance and resource usage.

- Study how to make things fast.
- In programming ...What is more important than performance?

1. Correctness
2. Simplicity
3. Maintainability
4. Robustness of the software
5. Security...etc.

Asymptotic Performance

- In this course, we care most about asymptotic performance
- How does the algorithm behave as the problem size gets very large?
- Running time
- Memory/storage requirements
- Bandwidth/power requirements/logic gates/etc.

Running Time

- Number of primitive steps that are executed
- Except for time of executing a function call most statements roughly require the same amount of time
- We can be more exact if need be
- Worst case vs. average case
(best case is)

Insertion Sort

```
    Statement
InsertionSort(A, n) {
    for i = 2 to n { con
        key = A[i] conen-1)
        j = i - 1;
        while (j > 0) and (A[j] > key) {
        A[j+1] = A[j]
        j = j - 1
    c
        }
        A[j+1] = key
    }
c
0
}
    T= th+t
```


Analyzing Insertion Sort

- $T(n)=c_{1} n+c_{2}(n-1)+c_{3}(n-1)+c_{4} T+c_{5}(T-(n-1))+c_{6}(T-(n-1))+c_{7}(n-1)$ $=c_{8} T+c_{9} n+c_{10}$
- What can T be?
- Best case -- inner loop body never executed
- $t_{i}=1 \rightarrow T(n)$ is a linear function
- Worst case -- inner loop body executed for all previous elements
- $\mathrm{t}_{\mathrm{i}}=\mathrm{i} \rightarrow \mathrm{T}(\mathrm{n})$ is a quadratic function
- Average case
- ???

Analysis

- Simplifications

- Ignore actual and abstract statement costs
- Order of growth is the interesting measure:
- Highest-order term is what counts
- Remember, we are doing asymptotic analysis
- As the input size grows larger it is the high order term that dominates

Upper Bound Notation

- We say InsertionSort's run time is $O\left(n^{2}\right)$
- Properly we should say run time is in $\mathrm{O}\left(\mathrm{n}^{2}\right)$
- Read O as "Big-O" (you'll also hear it as "order")
- In general a function
- $\mathrm{f}(\mathrm{n})$ is $\mathrm{O}(\mathrm{g}(\mathrm{n}))$ if there exist positive constants c and n_{0} such that $\mathrm{f}(\mathrm{n}) \leq c \cdot \mathrm{~g}(\mathrm{n})$ for all $\mathrm{n} \geq n_{0}$
- Formally
- $\mathrm{O}(\mathrm{g}(\mathrm{n}))=\left\{\mathrm{f}(\mathrm{n}): \exists\right.$ positive constants c and n_{0} such that $\mathrm{f}(\mathrm{n}) \leq c \cdot \mathrm{~g}(\mathrm{n}) \forall \mathrm{n} \geq n_{0}$

Insertion Sort Is O(n²)

- Proof

- Suppose runtime is $a n^{2}+b n+c$
- If any of a, b, and c are less than 0 replace the constant with its absolute value
- $\mathrm{an}^{2}+\mathrm{bn}+\mathrm{c} \leq(\mathrm{a}+\mathrm{b}+\mathrm{c}) \mathrm{n}^{2}+(\mathrm{a}+\mathrm{b}+\mathrm{c}) \mathrm{n}+(\mathrm{a}+\mathrm{b}+\mathrm{c})$
- $\quad \leq 3(a+b+c) n^{2}$ for $n \geq 1$
- Let $\mathrm{c}^{\prime}=3(\mathrm{a}+\mathrm{b}+\mathrm{c})$ and let $n_{0}=1$
- Question
- Is InsertionSort O(n3)?
- Is InsertionSort O(n)?

Big O Fact

- A polynomial of degree k is $O\left(n^{k}\right)$
- Proof:
- Suppose $f(n)=b_{k} n^{k}+b_{k-1} n^{k-1}+\ldots+b_{1} n+b_{0}$
- Let $a_{i}=\left|b_{i}\right|$
- $f(n) \leq a_{k} n^{k}+a_{k-1} n^{k-1}+\ldots+a_{1} n+a_{0}$

$$
\leq n^{k} \sum a_{i} \frac{n^{i}}{n^{k}} \leq n^{k} \sum a_{i} \leq c n^{k}
$$

Lower Bound Notation

- We say InsertionSort's run time is $\Omega(\mathrm{n})$
- In general a function
- $\mathrm{f}(\mathrm{n})$ is $\Omega\left(\mathrm{g}(\mathrm{n})\right.$) if \exists positive constants c and n_{0} such that $0 \leq \mathrm{c} \cdot \mathrm{g}(\mathrm{n}) \leq \mathrm{f}(\mathrm{n}) \forall \mathrm{n} \geq$ n_{0}
- Proof:
- Suppose run time is an $+b$
- Assume a and b are positive (what if b is negative?)
- $\mathrm{an} \leq \mathrm{an}+\mathrm{b}$

Asymptotic Tight Bound

- A function $f(n)$ is $\Theta(g(n))$ if \exists positive constants c_{1}, c_{2}, and n_{0} such that

$$
c_{1} \mathrm{~g}(\mathrm{n}) \leq \mathrm{f}(\mathrm{n}) \leq c_{2} \mathrm{~g}(\mathrm{n}) \forall \mathrm{n} \geq n_{0}
$$

- Theorem
- $\mathrm{f}(\mathrm{n})$ is $\Theta(\mathrm{g}(\mathrm{n}))$ iff $\mathrm{f}(\mathrm{n})$ is both $\mathrm{O}(\mathrm{g}(\mathrm{n})$) and $\Omega(\mathrm{g}(\mathrm{n})$)
- Proof: someday

Practical Complexity

Other Asymptotic Notations

- A function $\mathrm{f}(\mathrm{n})$ is $\mathrm{o}(\mathrm{g}(\mathrm{n}))$ if \exists positive constants c and n_{0} such that $\mathrm{f}(\mathrm{n})<c \mathrm{~g}(\mathrm{n}) \forall \mathrm{n} \geq n_{0}$
- A function $\mathrm{f}(\mathrm{n})$ is $\omega(\mathrm{g}(\mathrm{n}))$ if \exists positive constants c and n_{0} such that $c \mathrm{~g}(\mathrm{n})<\mathrm{f}(\mathrm{n}) \forall \mathrm{n} \geq n_{0}$
- Intuitively,
- o() is like <
- $\omega()$ is like $>$
- $\Theta()$ is like $=$
- O() is like \leq
- $\Omega()$ is like \geq

Up Next

- Solving recurrences
- Substitution method
- Master theorem

